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a b s t r a c t 

Array motion can efficiently enhance the achievable number of degrees-of-freedom (DOFs) by the virtue 

of filling the neighboring holes of each lag in the difference co-array of a linear sparse array. In this paper, 

a new structured sparse array design exploiting two uniform subarrays on a moving platform is proposed 

for direction-of arrival (DOA) estimation problems. The proposed array design yields a fully filled co-array. 

It compresses sensor spacing of one subarray to three times the unit sensor spacing while dilating that 

of the other subarray. The numbers of sensors in the two subarrays are chosen as arbitrary integers with- 

out the limitation of coprimality. The conditions on the array parameters to achieve full augmentability 

under array motion are provided. Closed-form expressions of maximum DOFs in the difference co-array 

of the synthetic array, which comprises the sensor positions before and after motion, are delineated. The 

non-coprimality of the sensor numbers is analyzed when the two subarrays are aligned at the reference 

sensor, and shown to offer higher DOFs than the coprimality. Numerical results of DOA estimation using 

the proposed array design are provided for performance comparison and validations of analysis. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Direction-of arrival (DOA) estimation exploiting sparse arrays 

an offer a high number of degrees-of-freedom (DOFs) with rel- 

tively low cost, hence it is widely utilized in communications, 

adar, sonar, and satellite navigation [1–21] . The coprime array 

4] and the nested array [5] are commonly used examples for 

tructured sparse array design, where two uniform subarrays are 

mployed to form a sparse array. Generally, by using sparse array 

onfigurations, O (N 

2 ) uncorrelated far-field narrowband sources 

an be estimated from the data collected by O (N) sensors [11] . 

The difference co-array arises in passive sensing where the DOA 

stimation involves the spatial correlation lags, in lieu of the sen- 

or data, along with the source power and steering vectors. Care- 

ully designed sparse arrays enable the creation of large virtual ar- 

ays and, as such, lead to improved DOA estimation. In general, 

epending on the sensor positions, some lags could be missing 

hile others could be redundantly computed. From this perspec- 

ive, different sparse array designs have been introduced, includ- 

ng minimum redundant arrays (MRAs) [22] and minimum hole 

rrays (MHAs) [23] . Sparse array design typically defines the sen- 
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or spacings and the relative distance of the two uniform subarrays 

onstituting the sparse array, as in the case of the generalized co- 

rime array [11] . More recently, the shifted coprime array configu- 

ation was proposed in [24] to secure more consecutive lags with 

 smaller array aperture compared with the generalized coprime 

rray with displaced subarrays. 

All the above cases assume the arrays to be mounted on fixed 

latforms or, more generally, ignore the motion of the sensor plat- 

orm. With array motion, a synthetic array can be formed by com- 

ining the original sparse array and its shifted version under the 

ssumption of slowly time-varying signal environment. In this re- 

pect, a moving coprime array was proposed in [25] to provide a 

ole-free co-array for a strict stationary signal environment and 

or the case of larger array aperture. The array moving distance 

as defined as N / 2 half-wavelength for two subarrays of M and N

ensors. In our previous works [26–29] , the motion distance was 

onfined to half-wavelength, which is much less restrictive than 

he condition imposed in [25] . Different sparse arrays on moving 

latforms, including the coprime array, nested array, MRAs, MHAs 

nd uniform sparse array, were discussed and analyzed in [26] . It 

as shown that the difference co-array of the synthetic array is 

he combination of the difference co-array of the original array and 

ts unit lag shifted versions along and opposite to the direction of 

otion. In [28] , a dilated nested array was proposed to obtain a 

ole-free co-array by expanding the sensor spacings of the two 

https://doi.org/10.1016/j.sigpro.2020.107872
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Fig. 1. DOA Estimation exploiting a moving sparse array. 
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ubarrays. It is noted however that, even with array translational 

otion, the resulting synthetic array may not be fully augmented, 

hat is, the corresponding difference co-arrays can still be sparse. 

In this paper, we propose a novel sparse array design to pro- 

ide a hole-free difference co-array with merely a half-wavelength 

rray motion. The proposed array is divided into three categories 

ccording to the distance between the two subarrays. Fundamen- 

ally, we consider two subarrays, named as subarray1 and subar- 

ay2, consisting of M and N sensors, respectively. The sensor spac- 

ng of subarray1 is taken as three times the unit spacing, and that 

f subarray2 is dilated by an integer multiple of M unit spacing. 

nlike the coprime array, the numbers of the two subarrays M, N

re just arbitrary integers. We drive the expressions describing the 

ubarray configurations leading to a fully filled co-array. The opti- 

al distance between two subarrays and the values of M, N are de- 

ermined under the criterion of maximum DOFs. The advantages of 

elaxing coprimality of M, N are discussed and illustrated by sim- 

lation examples. The latter implement the co-array MUSIC algo- 

ithm [5,13] for DOA estimation. 

The remainder of the paper is organized as follows. The mov- 

ng sparse array synthesis process and DOA estimations using co- 

rray MUSIC are summarized in Section 1 . In Section 2 , the dif-

erence co-array associated with a moving platform is reviewed. 

ection 4 describes the proposed array structure along with the 

onditions on the different parameters leading to a fully filled co- 

rray. In this section, the optimal values of M and N as well as the 

istance between the two subarrays are determined based on max- 

mum DOFs. In Section 5 , the performance of the proposed array is 

valuated through simulations. Section 6 concludes the paper. 

Notations: We use lower-case (upper-case) bold characters to 

enote vectors (matrices). In particular, I N denotes the N ×N iden- 

ity matrix. ( ·) ∗ implies complex conjugation, whereas (·) T and (·) H 
espectively denote the transpose and conjugate transpose of a ma- 

rix or a vector. v ec( ·) denotes the vectorization operator that turns 

 matrix into a vector by stacking all columns on top of the an-

ther. E ( ·) is the statistical expectation operator and 

⊗ 

denotes the 

ronecker product. S denotes the sets of integers, and C denotes 

he sets of complex values. diag{ x } represents a diagonal matrix 

hat uses the elements of x as its diagonal elements. ∪ denotes the 

nion operation. 

. Problem formulation 

.1. Signal model 

We consider a one-dimension (1-D) sparse array with K sen- 

ors moving at a constant velocity v . The schematic is illustrated 

n Fig. 1 , where the black circles and red rhombus represent the 

ensor positions of the original and the shifted arrays, respectively. 

he minimum inter-element spacing is denoted as d = λ/ 2 , where 

represents the wavelength. All the sensor positions are integer 

ultiplication of d. Denote D = [ d l , . . . , d K ] 
T 

as the array sensor po- 

itions, where d k , k = 1 , 2 , . . . , K is the position of the k th sensor.

he first sensor is used as a reference, i.e., d = 0 . The received
1 

2 
ignals from Q uncorrelated far-field narrowband sources are de- 

cribed as s q (t) , t = T s , 2 T s , . . . , L s T s , for q = 1 , . . . , Q, where T s and

 s , respectively, represent the sampling interval and the number 

f snapshots. The arrival angle of the q th source is denoted as θq .

ecause of the assumed short translation motion of the array, the 

irections of the sources with respect to the sensor array can be 

onsidered unchanged during the short processing time. The out- 

ut of the receive array, at time t, is expressed as 

 (t ) = 

Q ∑ 

q = 1 
s q (t ) exp ( −j2 πvt sin ( θq ) /λ) a ( θq ) + ε (t ) 

= As (t) + ε (t) , 

(1) 

here a ( θq ) = [1 , exp (− j2 π
d 2 sin ( θq ) 

λ
) , . . . , exp (− j2 π

d K sin ( θq ) 

λ
)] T 

epresents the steering vector corresponding to θq . A = [ a ( θ1 ) , 

 . . , a ( θQ )] ∈ C 

K×Q is the array manifold matrix. In the above

quation, s (t) = [ s 1 (t ) exp (− j2 π v t sin ( θ1 ) 
λ

) , . . . , s Q (t ) exp (− j2 π
v t sin ( θQ ) 

λ
)] T is signal vector and ε (t) ∈ C 

K×1 is zero-mean additive 

hite complex Gaussian noise vector with covariance matrix σ 2 
ε I K . 

t time t + τ, the output of the receive array becomes 

x (t + τ ) = 

Q ∑ 

q =1 

s q (t + τ ) exp ( − j2 πv t sin ( θq ) /λ) 

· exp ( − j2 πv τ sin ( θq ) /λ) a ( θq ) + ε (t + τ ) 
= Bs (t + τ ) + ε (t + τ ) , 

(2) 

here B = [ b ( θ1 ) , . . . , b ( θQ )] ∈ C 

K×Q , with 

b ( θq ) = exp ( − j2 πv τ sin ( θq ) /λ) a ( θq ) 
= [ exp ( − j2 πv τ sin ( θq ) /λ) , 

exp ( − j2 π(v τ + d 2 ) sin ( θq ) /λ) , . . . , 

exp ( − j2 π(v τ + d L ) sin ( θq ) /λ) ] 
T 
, 

(3) 

nd the signal vector at time t + τ is s (t + τ ) = [ s 1 

t + τ ) exp ( − j2 π v t sin ( θ1 ) 
λ

) , . . . , s Q (t + τ ) exp ( − j2 π
v t sin ( θQ ) 

λ
)] T . In

ddition, ε (t + τ ) is the noise vector at time t + τ . We assume

hat ε (t) and ε (t + τ ) are uncorrelated. 

For narrowband signals with carrier frequency f, s q (t + τ ) = 

 q (t) exp ( j2 π fτ ) . Accordingly, (2) can be rewritten as 

 (t + τ ) = exp ( j2 π fτ ) Bs (t) + ε (t + τ ) . (4)

y choosing v τ = d = λ/ 2 , the steering vector at time t + τ be-

omes 

b ( θq ) = [ exp ( − jπsin ( θq ) ) , exp ( − jπ( 1 + d 2 /d ) sin ( θq ) ) , . . . ,

exp ( − jπ( 1 + d L /d ) sin ( θq ) ) ] 
T 
. 

(5) 

ultiplying x (t + τ ) by the phase correction factor exp (− j2 π fτ ) , 

e obtain the phase synchronized received signal vector as [30] 

˜  (t + τ ) = x (t + τ ) exp (− j2 π fτ ) = Bs (t) + ˜ ε (t + τ ) , (6)

here ˜ ε (t + τ ) = exp (− j2 π fτ ) ε (t + τ ) . Combining Eqs. (1) and

6) yields, 

 (t) = 

[
x (t) 

˜ x (t + τ ) 

]
= A s s (t) + ε s (t) . (7) 

here A s = [ a s ( θ1 ) , . . . , a s ( θQ )] ∈ C 

L c ×Q , a s ( θq ) =
 a T ( θq ) , b 

T ( θq ) ] T ∈ C 

L c ×1 , with L c ≤ 2 K denoting the number 

f the sensors in y (t) , and ε s (t) = 

[
ε T (t) , ˜ ε T (t + τ ) 

] T 
. 

.2. DOA estimation 

DOA estimation using sparse array can be obtained based on 

parse signal reconstruction techniques [6,31–33] or co-array MU- 

IC [5,13] . We apply the latter to a hole-free difference co-array, as 

iscussed below. 
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The covariance matrix of y (t) is defined as 

 y = E[ y (t) y H (t)] = A s R s A s 
H + σ 2 

ε I L c , (8) 

here R s = E[ s (t) s H (t)] = diag ([ σ 2 
1 
, . . . , σ 2 

Q 
]) is the source covari-

nce matrix, with σ 2 
q denoting the input power of the q th source 

ignal. In practice, the covariance matrix R y is estimated from L s 
napshots, i.e., 

˜ 
 y = 

1 

L s 

L s ∑ 

l s =1 

y (t) y H (t) . (9) 

ectorizing ˜ R y in (9) yields, 

 = v ec ( ̃  R y ) = 

˜ A p s + σ 2 
ε

˜ I , (10) 

here ˜ A = [ ̃ a s ( θ1 ) , . . . , ̃  a s ( θQ )] , ˜ a s ( θq ) = a ∗s ( θq ) 
⊗ 

a s ( θq ) ,

 s = [ σ 2 
1 , . . . , σ

2 
Q ] 

T , ˜ I = v ec(I L c ) . The spatial smoothing matrix

˜ 
 ss is given by [5,11] 

˜ 
 ss = 

1 

L ss 

L ss ∑ 

i =1 

R i . (11) 

here L ss = (L ULA + 1) / 2 with L ULA denoting the number of con-

iguous lags in the difference co-array of y (t) . R i is the convariance

atrix of the i th smoothing subarray. 

Alternatively, ˜ R ss can be computed from the expression 

˜ R ss = 

˜ 
 

2 / L ss [13] , where ˜ R is a Toeplitz matrix [13] , 

˜ 
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

[
˜ y ULA 

diff 

]
L ss 

[
˜ y ULA 

diff 

]
L ss −1 

· · ·
[

˜ y ULA 
diff 

]
1 [

˜ y ULA 
diff 

]
L ss +1 

[
˜ y ULA 

diff 

]
L ss 

· · ·
[

˜ y ULA 
diff 

]
2 

. . . 
. . . 

. . . 
. . . [

˜ y ULA 
diff 

]
2 L ss −1 

[
˜ y ULA 

diff 

]
2 L ss −2 

· · ·
[

˜ y ULA 
diff 

]
L ss 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (12) 

ith 

˜ y ULA 
diff 

]
i 
= 

1 

| M (i ) | 
∑ 

(n 1 ,n 2 ) ∈ M (i ) 

〈 ̃  R y 〉 n 1 ,n 2 , (13) 

 (i ) = { (n 1 , n 2 ) | n 1 − n 2 = i ∈ y ULA 
diff } . (14)

here y ULA 
diff 

is the contiguous part of the difference co-array con- 

tructed from y (t) . 〈 ̃  R y 〉 n 1 ,n 2 denotes the value of the covariance 

atrix ˜ R y at the support location n 1 , n 2 [13] . The MUSIC algorithm 

or DOA estimation can be performed directly for DOA estimation 

ased on (11) or (12) . 

. The difference co-array on moving platform 

For a fixed sparse array with K sensors, the sensors are located 

t 

 x = { nd, n ∈ S x } , (15) 

here S x is an integer set. The difference co-array is defined as, 

 x = { n 1 − n 2 , n 1 , n 2 ∈ S x } , (16) 

he sensor positions of the shifted array after moving a half- 

avelength are expressed as, 

 t = 

{
n 

′ d, n 

′ ∈ S t 

}
, (17) 

here S t is an integer set corresponding to the shifted array. The 

ensor positions of the synthetic array, consisting of both the orig- 

nal and the shifted arrays, are given by, 

 s = P x ∪ P t . (18) 

t was shown in [26] that the difference co-array of the synthetic 

rray D s consists of the difference co-array of the original array D x 
3 
nd its unit lag shifted versions D 

L 
x and D 

R 
x along and opposite to 

irection of motion, respectively, 

 s = D x ∪ D 

L 
x ∪ D 

R 
x . (19) 

An example of the original array, the shifted array, the syn- 

hetic array, the difference co-arrays of the original array, and the 

ynthetic array is depicted in Fig. 2 , where K= 13. Only the non-

egative part of the difference co-array is shown. It is clear that 

he synthetic array S s has more sensors due to the combination of 

he S x and S t . Concerning the difference co-array, D 

L 
x fills the left 

ole, whereas D 

R 
x fills the right hole which results in filling most 

f the holes in D x . Some holes remain, such as the holes 33 and

8 in Fig. 2 since only the neighboring holes of the available lags 

re filled,. 

. The proposed sparse array 

A structured sparse array using two subarrays with different 

ensor spacings is proposed. From Section 3 and the work in [26] , 

he array motion can fill the two neighboring holes of each lag. 

his property implies that a fully augmented sparse array can 

merge from array motion when the number of consecutive holes 

n the difference co-array is less than 3. The array configurations 

f the proposed array are depicted in Fig. 3 . Here, the numbers 

f sensors in the two subarrays assume integer values M, N. The 

ensor spacing of one subarray is set as d x d (d x = 3) , whereas the

pacing for the other subarray is d y d. The distance between the 

rst sensors of the two subarrays is defined as Ld, where L is an 

nteger. The proposed array can be divided into three categories 

ccording to L, which are depicted in Fig. 3 (a)–(c). The total num- 

er of the sensors is K ≤ M + N. It is noted that M and N are not

ecessarily coprime integers as in the case of the coprime array or 

he generalized coprime array. This relaxed condition also applies 

o d x and d y . 

The sensor positions of the proposed array are expressed as 

 = { md x d, 0 ≤ m ≤ M − 1 } ∪ { (nd y + L ) d, 0 ≤ n ≤ N − 1 } . (20)

he above equation describes the configuration in Fig. 3 (a) for L = 

 . 

Proposition 1 : The co-array of the synthetic array of the pro- 

osed array has the following properties: 

(1) It is a fully filled co-array when d y ≤ 3 M and L ≤ 6 M. 

(2) The maximum DOF of the difference co-array for the various 

rray parameters is provided in TABLE I, when d y = 3 M. 

roof. For the array in Fig. 3 (a) and (b), i.e., 0 ≤ L ≤ 3( M − 1) ,

here exists at least one overlapping sensor between subarray1 and 

ubarray2. The self-lags of the subarray1 provide all consecutive 

ags for its corresponding difference co-array after array motion. 

herefore, the difference co-array of the synthetic array is a hole- 

ree array only when the difference of the neighboring lags of the 

ross-lags between the subarray1 and subarray2 is less than 3, i.e., 

d y − 3(M − 1) − (k − 1) d y ≤ 3 , k ∈ [1 , N − 1] , (21)

rom the above equation, d y ≤ 3 M. For 3( M − 1) < L ≤ 6 M , the 

ross-lag between the last sensor of subarray1 and the first sensor 

f subarray2 should satisfy the following expression, in addition to 

ondition d y ≤ 3 M ( Table 1 ). 

 − 3(M − 1) − 3 M ≤ 3 . (22) 

hich yields L ≤ 6 M, and this proves the first property. 

Regarding the proof of the second property, we start from L = 0 . 

he maximum DOF is equivalent to the maximum array aper- 

ure due to the existence of the hole-free difference co-array. For 

 y > 3(M − 1) , the position of the second sensor in subarray2 is 

reater than that of the last sensor in subarray1. This results in the 
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Fig. 2. An example of the original array, the shifted array, the synthetic array, the difference co-arrays of the original array and the synthetic array, where K= 13. 

Fig. 3. Configurations of the proposed array. (a) L = 0; (b) 0 < L ≤ 3( M − 1) ; (c) 3( M − 1) < L ≤ 6 M . 

Table 1 

Parameters for the maximum DOF of the synthetic array. 

L K K is odd or even M, N DOF max 

L = 0 K = M + N -1 odd M = N = 

K +1 
2 

or M = 

K −1 
2 

, N = 

K +3 
2 

3(K 2 −1) 
4 

+ 2 

even M = 

K 
2 
, N = 

K 
2 

+ 1 3 K 2 

4 
+ 2 

L = 3( M − 1) K = M + N -1 odd M = N = 

K+1 
2 

3(K−1)(K+3) 
4 

+ 2 

even M = 

K 
2 
, N = 

K 
2 

+ 1 or M = 

K 
2 

+ 1 , N = 

K 
2 

3(K 2 +2 K) 
4 

− 1 

L = 6 M K = M + N odd M = 

K+1 
2 

, N = 

K-1 
2 

3(K+1) 2 

4 
+ 2 

even M = N = 

K 
2 
, or M = 

K 
2 

+ 1 , N = 

K 
2 

− 1 3 K (K +2) 
4 

+ 2 

4 
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Fig. 4. An example of the proposed array and the dilated nested array, where K= 9 and d y = 3 M. (a) L = 0 , M = N = 5 ; (b) L = 3(M − 1) , M = N = 5 ; (c) the dilated nested 

array, N 1 = 4 , N 2 = 5 ; (d) L = 6 M, M = 5 , N = 4 . 
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s  
xistence of only one overlapping sensor between subarray1 and 

ubarray2, which can be seen from Fig. 3 (a), i.e., K = M + N − 1 .

herefore, the DOF of the synthetic array can be expressed as 

OF = (N − 1) d y + 2 . The constant, 2, is the sum of the zero-lag

nd the additional lag due to array motion. The maximum DOF 

s denoted as DOF max = 3 M(N − 1) + 2 since d y ≤ 3 M. Substituting

 = M + N − 1 into DOF max = 3 M(N − 1) + 2 , we obtain DOF max =
 M (K − M ) + 2 . The expressions in TABLE I for L = 0 can be ob-

ained by maximizing the function DOF max . For 0 < L ≤ 3( M − 1) , 

OF = L + (N − 1) d y + 2 . The upper bound DOF max = 3( M − 1) +
 M(N − 1) + 2 corresponds to L = 3( M − 1) . Similarly, DOF max can 

e expressed as the function of K to solve for the optimal M, N. It 

s noted that K = M + N for 3( M − 1) < L ≤ 6 M since there are no

verlapping sensors between the two subarrays (see Fig. 3 (c)). Sim- 

lar to 0 < L ≤ 3( M − 1) , DOF max = 6 M + 3 M(N − 1) + 2 for L = 6 M .

he maximum DOF and the optimal M, N can be obtained by sub- 

tituting K = M + N into DOF max = 6 M + 3 M(N − 1) + 2 . The proof

s complete. �

An example is shown in Fig. 4 , where the sensor positions and 

he difference co-arrays of the synthetic array are depicted for 

 = 0 (see Fig. 4 (a)), L = 3 M − 1 (see Fig. 4 (b)) and L = 6 M (see

ig. 4 (d)) when K = 9 and d y = 3 M. We set M = N = 5 for Fig. 4 (a)

nd (b), and M = 5 , N = 4 for Fig. 4 (d). It is evident that all the

forementioned difference co-arrays of synthetic array are fully 

lled. The case of Fig. 4 (d) offers the highest DOF since there are

o overlapping sensors between the two subarrays. 

.1. Bounds on nested arrays 

The nested array, on fixed platforms, consisting of two uniform 

ubarrays and producing a hole-free difference co-array, was given 

n [5] , where one subarray has a unit sensor spacing. The concept 

f the nested array was extended in [11] and [28] by the means 

f compression or dilation of the sensor spacing. In this paper, we 

ropose to enhance the DOF in sparse arrays on moving platform 

y compressing the sensor spacing of one subarray and dilating 

hat of the other. For L = 0 , the proposed array is a nested ar-

ay when 3(M − 1) ≤ d y ≤ 3 M. However, it is worthy noting that 

t is not an optimum configuration since the first sensors of the 

wo subarrays coincide in positions, which leads to a decrease in 

he array aperture. This can be seen in Fig. 4 (a) and (c), where

 = 9 , N 1 = 4 , N 2 = 5 for the dilated nested array. The proposed ar-

ay deviates from a nested array for d y < 3(M − 1) , but it is still

 sparse array whose difference co-array is fully filled. The con- 

ition on this deviation is L + d y < 3(M − 1) for 0 < L ≤ 3( M − 1) .

he proposed array has the same array configuration as the dilated 

ested array for L = 3(M − 1) , which can be seen in Fig. 4 (b) and
5 
c). It becomes a nested array for 3( M − 1) < L ≤ 6 M . Although it 

as the similar array configuration as the dilated nested array, the 

roposed array structure has a higher DOF since the distance be- 

ween the last sensor of subarray1 and the first sensor of subar- 

ay2 is increased, which can be observed in Fig. 4 (c) and (d). 

.2. The non-coprimality of the proposed array 

In some situations, the non-coprimality of the proposed ar- 

ay offers higher DOF than coprimality. Considering the first case 

f Fig. 3 , the maximum DOF of a synthetic non-nested array is 

OF max = (3 M − 4)(N − 1) + 2 for d y = 3 M − 4 , according to the

onclusion of last subsection. The optimal M, N are obtained by 

aximizing the quadratic function DOF max = (3 M − 4)(K − M) + 2 , 

here K = M + N − 1 . The solution is denoted as M = round(K/ 2 +
 / 3) , N = round(K/ 2 + 1 / 3) , where round(x ) rounds each element

f x to the nearest integer. For instance, 46 non-negative lags 

re obtained when M = N = 5 for K = 9 , as depicted in Fig. 5 (a),

hereas 42 non-negative lags for M = 4 , N = 6 in Fig. 5 (b). When

he coprime integers are M = 3 , N = 7 , then 32 non-negative lags

re produced, as shown in Fig. 5 (c). They represent non-nested ar- 

ays, while the coprimality of M, N offers least DOF. 

. Simulation results 

In this section, we examine the DOA estimation performance 

f the proposed array structure using the MUSIC pseudo spectrum 

nd the root mean-square error (RMSE), defined as 

MSE = 

√ √ √ √ 

1 

Q N m 

N m ∑ 

p=1 

Q ∑ 

q =1 

( ̂  θq (p) − θq ) 
2 
, (23) 

here ˆ θq (p) is the estimate of the source angle θq obtained from 

he p th Monte Carlo trial. N m 

is the number of Monte Carlo trials. 

.1. DOA estimation 

In the first simulation, we examine the MUSIC spectra based 

n the proposed array with the maximum DOF. We assume K = 

 , d y = 3 M, and Q sources distributed uniformly over d sin θ/λ = 

 −0 . 4 9 , 0 . 4 9] . We use 1,0 0 0 snapshots. The input signal-to-noise

atio (SNR) is set to 10 dB. The different values of L = 0 , L =
(M − 1) and L = 6 M are considered, with the corresponding num- 

ers M = N = 5 , M = N = 5 and M = 5 , N = 4 , respectively. The re-

pective numbers of sources Q are 58, 68 and 72. The co-array 

USIC in [13] is applied, and the corresponding MUSIC spectra are 

hown in Fig. 6 . It is evident that all the sources are distinguished,
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Fig. 5. An example of the non-coprimality of the proposed array, where K= 9, L = 0 and d y = 3 M − 4 . (a) M = N = 5 ; (b) M = 4 , N = 6 ; (c) M = 3 , N = 7 . 

Fig. 6. MUSIC spectra using the maximum DOF of the proposed array, where K= 9 and d y = 3 M. (a) L = 0 , M = N = 5 , Q = 58 ; (b) L = 3(M − 1) , M = N = 5 , Q = 68 ; (c) 

L = 6 M, M = 5 , N = 4 , Q = 72 . 
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hich is rather expected since the synthetic array of the proposed 

rray can offer 61, 73 and 75 consecutive lags, respectively. 

In the second simulation example, we examine the performance 

f the proposed array with the non-coprimality. We set L = 0 , 

 = 9 , d y = 3 M − 4 and Q = 35 . Three groups of M, N are consid-

red, namely M = N = 5 , M = 4 , N = 6 and M = 3 , N = 7 . The third

roup is coprime. The other parameters are the same as the first 

imulation. The MUSIC spectra are shown in Fig. 7 . The coprime 

arameters cannot identity all sources because they only provide 

2 consecutive lags after array motion. 
r  

6 
.2. DOA estimation performance 

The RMSE performance are plotted versus SNR and the num- 

er of snapshots in Figs. 8 and 9 , respectively, where different val- 

es of L, M, N and d y of the proposed array are used. Q = 25 un-

orrelated sources for K = 9 are used to guarantee the number of 

ources to be lower than the available DOFs for all cases. 200 inde- 

endent trails are used in all simulations. In Fig. 8 , 500 snapshots 

f data are utilized and the input SNR varies between −10 dB and 

0 dB. All curves decrease in values with SNR increments. The ar- 

ay with the parameters of M = 5 , N = 4 , L = 6 M and d y = 3 M be-
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Fig. 7. MUSIC spectra using the non-coprimality of the proposed array, where K= 9, L = 0 , Q = 35 and d y = 3 M − 4 . (a) M = N = 5 ; (b) M = 4 , N = 6 ; (c) M = 3 , N = 7 . 

Fig. 8. RMSE vs. input SNR. 
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n

Fig. 9. RMSE vs. the number of snapshots. 

a  

w
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fi

aves the best in all cases, while the coprime M = 3 , N = 7 with

he parameters L = 0 and d y = 3 M − 4 performs the worst. This is

ecause the former has the maximum DOFs in the difference co- 

rray, whereas the coprime case offers the minimum DOFs. It is 

oted that there are no overlapping sensors between the two sub- 
7 
rrays for the former case, which leads to M = 5 , N = 4 . In Fig. 9 ,

e set SNR equal to 0 dB and vary the number of snapshots from 

00 to 2000. Clearly, similar results regarding the superiority of 

he performance of the proposed array can be observed from the 

gure. 
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. Conclusion 

A sparse array design for moving platforms was proposed. The 

rray utilizes two uniform subarrays to construct a fully filled dif- 

erence co-array which can estimate a number of sources largely 

xceeding the number of sensors. The sensor spacings of the two 

ubarrays were such as the neighboring sensors of one subarray 

f M sensors are separated by three times the unit spacing while 

hose in the other subarray of N sensors are separated by no more 

han 3 M. The nested array emerges as a special case of the pro-

osed array when the array parameters satisfy certain conditions. 

he non-coprimality of M, N is shown to be better than coprimal- 

ty in the case where the two subarrays share the reference sensor. 

he analysis and simulations presented in this paper assume accu- 

ate platform velocity knowledge and no sensor position perturba- 

ions. 
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